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Electronic  transport  in  graphene  is  sensitive  to  static  defects  that  are  for  example  frozen  ripples,
screened  charged  impurities,  or  local  defects  like  vacancies  or  adsorbates  (Refs.  [1-4]  and  Refs.
therein). Adsorbates, which can be organic groups or adatoms attached to the surface of graphene, are
of particular interest in the context of functionalisation which aims at controlling the electronic properties
by attaching atoms or molecules to graphene ([5-7] and Refs. therein). Therefore there is a need for a
theory of conductivity in the presence of such defects. 

We propose a unified description of transport in one and two graphene sheets with adsorbates that fully
takes  into  account  localization  effects  and  loss  of  electronic  coherence  due  to  inelastic  processes
[10,11]. For the monolayer case, we focus on the role of the scattering properties of the adsorbates and
analyse in detail cases with resonant or nonresonant scattering. Sufficiently far from the Dirac energy
and at sufficiently small concentrations the semi-classical theory can be a good approximation. Near the
Dirac  energy  we  identify  different  quantum  regimes,  where  the  conductivity  presents  universal
behaviours. In rotated graphene bilayers, we analyse in particular the case where defects are in just one
layer but affect transport in the other layer due to the interlayer coupling. Numerical results on the role of
rotation angle and defects concentration confirm a simple analytical model.

Method
Theoretical studies of transport in the presence of local defects have dealt mainly either with the Bloch-
Boltzmann formalism or with self-consistent approximations ([5-10] and Refs. Therein). In these theories
a major length scale that characterizes the electron scattering is the elastic mean-free path Le . These
approaches indeed explain  some experimental  observations  but  yet  these  theories  have  important
limitations and can hardly describe in detail the localization phenomena that has been reported in some
experiments [4].  Indeed in the presence of  a short  range potential,  such as that  produced by local
defects the electronic states are localized on the length scale ξ  [5-7]. A sample will be insulating unless
some source of scattering, like electron-electron or electron-phonon interaction, leads to a loss of the
phase coherence on a length scale Li  <  ξ . Therefore, in addition to the elastic mean-free path Le the
inelastic mean-free path Li and the localization length ξ play also a fundamental role for the conductivity
of graphene with adsorbates. 
Here we use a numerical approach for the conductivity that treats exactly the tight-binding Hamiltonian
and  takes  fully  into  account  the  effect  of  Anderson  localization.  The  quantum  diffusion  evaluate
numerically using the MKRT approach [12].  It  gives access to the characteristic lengths and to the
conductivity as a function of the concentration, the Fermi energy EF and the inelastic mean-free path Li
[10]. In real samples Li depends on the temperature, or magnetic field, but it is an adjustable parameter
in this work. 

Results 
Our results confirm that sufficiently far from the Dirac energy ED and for sufficiently small adsorbates
concentrations, the Bloch-Boltzmann theory and the self-consistent theories are valid. Near the Dirac
energy  we  identify  different  regimes  of  transport  that  depend  on  whether  the  adsorbates  produce
resonant or nonresonant scattering. We show also that a proper tight-binding model of graphene which
includes hopping beyond the nearest-neighbor leads to sizable modifications of the scattering properties
with respect to the mostly used nearest neighbor hopping model. 
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Some universal  aspects  of  the conductivity  are  present with  or  without  the hoping beyond nearest
neighbors. For small inelastic scattering length Li such as Li  ≃  Le the conductivity σ is almost equal to
the  universal  minimum  (plateau)  of  the  microscopic  conductivity  (semi-classical  conductivity)
σM  ≃  4e2

/(πh) except  for EF  ≃  ED when  the  model  only  takes  into  account  nearest  neighbor
hopping (figure 1). For larger Li ,  Le  <  Li , the conductivity follows a linear variation with the logarithm of
Li with  nearest  neighbor  hopping  only  and  with  hopping  beyond  nearest  neighbors  (figure 2).  In

contrast, the high central peak of the conductivity and the anomalous behavior at the Dirac energy are
not robust and are specific to the model with nearest neighbor hoping only. Therefore, we conclude that
a precise comparison of conductivity with experiments requires a detailed description of the electronic
structure and in particular of that of graphene.
In twisted bilayer graphene, the effective coupling between electronic states of the two layers increases
when the angle  of  rotation decreases,  and electronic  confinement  is  obtained for  very  small  angle
[13,14,15]. Consequences on transport in twisted bilayer with adsorbates are presented and confirmed
by a analytical model.
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Figure 1: Microscopic conductivity σ versus 
energy E, for concentration (●) c = 1%, (▲) 
c = 2% and (▼) c = 3% of resonant scatters. 
(dashed line) first neighbor coupling only, 
(continuous line) beyond first neighbor coupling.
G0=2e

2
/h  [11].

Figure 2: Conductivity σ versus the inelastic 
scattering length Li for concentration c (%) and 
different energies E (eV) in the plateau of
σM (E) : (dashed line) first neighbor coupling 

only, (continuous line) beyond first neighbor 
coupling [11].


